TY - JOUR
T1 - Hyperspectral Time-Series Target Detection Based on Spectral Perception and Spatial-Temporal Tensor Decomposition
AU - Zhao, Xiaobin
AU - Liu, Kaiqi
AU - Gao, Kun
AU - Li, Wei
N1 - Publisher Copyright:
© 1980-2012 IEEE.
PY - 2023
Y1 - 2023
N2 - The detection of camouflaged targets in the complex background is a hot topic of current research. The existing hyperspectral target detection algorithms do not take advantage of spatial information and rarely use temporal information. It is difficult to obtain the required targets, and the detection performance in hyperspectral sequences with complex background will be low. Therefore, a hyperspectral time-series target detection method based on spectral perception and spatial-temporal tensor (SPSTT) decomposition is proposed. First, a sparse target perception strategy based on spectral matching is proposed. To initially acquire the sparse targets, the matching results are adjusted by using the correlation mean of the prior spectrum, the pixel to be measured, and the four-neighborhood pixel spectra. The separation of target and background is enhanced by making full use of local spatial structure information through local topology graph representation of the pixel to be measured. Second, in order to obtain a more accurate rank and make full use of temporal continuity and spatial correlation, a spatial-temporal tensor (STT) model based on the gamma norm and L2,1 norm is constructed. Furthermore, an excellent alternating direction method of multipliers (ADMM) is proposed to solve this model. Finally, spectral matching is fused with STT decomposition in order to reduce false alarms and retain more right targets. A 176-band Beijing Institute of Technology hyperspectral image sequence - I (BIT-HSIS-I) dataset is collected for the hyperspectral target detection task. It is found by testing on the collected dataset that the proposed SPSTT has superior performance over the state-of-the-art algorithms.
AB - The detection of camouflaged targets in the complex background is a hot topic of current research. The existing hyperspectral target detection algorithms do not take advantage of spatial information and rarely use temporal information. It is difficult to obtain the required targets, and the detection performance in hyperspectral sequences with complex background will be low. Therefore, a hyperspectral time-series target detection method based on spectral perception and spatial-temporal tensor (SPSTT) decomposition is proposed. First, a sparse target perception strategy based on spectral matching is proposed. To initially acquire the sparse targets, the matching results are adjusted by using the correlation mean of the prior spectrum, the pixel to be measured, and the four-neighborhood pixel spectra. The separation of target and background is enhanced by making full use of local spatial structure information through local topology graph representation of the pixel to be measured. Second, in order to obtain a more accurate rank and make full use of temporal continuity and spatial correlation, a spatial-temporal tensor (STT) model based on the gamma norm and L2,1 norm is constructed. Furthermore, an excellent alternating direction method of multipliers (ADMM) is proposed to solve this model. Finally, spectral matching is fused with STT decomposition in order to reduce false alarms and retain more right targets. A 176-band Beijing Institute of Technology hyperspectral image sequence - I (BIT-HSIS-I) dataset is collected for the hyperspectral target detection task. It is found by testing on the collected dataset that the proposed SPSTT has superior performance over the state-of-the-art algorithms.
KW - Complex background
KW - hyperspectral sequences
KW - hyperspectral target detection
KW - spatial-temporal tensor (STT) decomposition
KW - spectral perception (SP)
UR - http://www.scopus.com/inward/record.url?scp=85168723829&partnerID=8YFLogxK
U2 - 10.1109/TGRS.2023.3307071
DO - 10.1109/TGRS.2023.3307071
M3 - Article
AN - SCOPUS:85168723829
SN - 0196-2892
VL - 61
JO - IEEE Transactions on Geoscience and Remote Sensing
JF - IEEE Transactions on Geoscience and Remote Sensing
M1 - 5520812
ER -