High-order information matters: Learning relation and topology for occluded person re-identification

Wang Guan'an, Shuo Yang, Huanyu Liu, Zhicheng Wang, Yang Yang, Shuliang Wang, Gang Yu, Erjin Zhou, Jian Sun

科研成果: 期刊稿件会议文章同行评审

368 引用 (Scopus)

摘要

Occluded person re-identification (ReID) aims to match occluded person images to holistic ones across dis-joint cameras. In this paper, we propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment. At first, we use a CNN backbone and a key-points estimation model to extract semantic local features. Even so, occluded images still suffer from occlusion and outliers. Then, we view the local features of an image as nodes of a graph and propose an adaptive direction graph convolutional (ADGC) layer to pass relation information between nodes. The proposed ADGC layer can automatically suppress the message passing of meaningless features by dynamically learning direction and degree of linkage. When aligning two groups of local features from two images, we view it as a graph matching problem and propose a cross-graph embedded-alignment (CGEA) layer to jointly learn and embed topology information to local features, and straightly predict similarity score. The proposed CGEA layer not only take full use of alignment learned by graph matching but also replace sensitive one-to-one matching with a robust soft one. Finally, extensive experiments on occluded, partial, and holistic ReID tasks show the effectiveness of our proposed method. Specifically, our framework significantly outperforms state-of-the-art by 6.5% mAP scores on Occluded-Duke dataset. Code is available at https://github.com/wangguanan/HOReID.

源语言英语
文章编号9157237
页(从-至)6448-6457
页数10
期刊Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
DOI
出版状态已出版 - 2020
活动2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 - Virtual, Online, 美国
期限: 14 6月 202019 6月 2020

指纹

探究 'High-order information matters: Learning relation and topology for occluded person re-identification' 的科研主题。它们共同构成独一无二的指纹。

引用此