摘要
Let (n,c) be the class of Moran sets with integer n ≥ 2 and real c satisfying nc < 1. It is well known that the Hausdorff dimension of any set in this class is s = -logcn. We show that for any E (n,c), 2s 2 (n - 1)c 1 - cs ≤s(E) ≤ 1, where s(E) denotes s-dimensional Hausdorff measure of E. For any a with 2s 2 (n - 1)c 1 - cs ≤ a ≤ 1, there exists a self-similar set E (n,c) such that s(E) = a.
源语言 | 英语 |
---|---|
文章编号 | 2050053 |
期刊 | Fractals |
卷 | 28 |
期 | 3 |
DOI | |
出版状态 | 已出版 - 1 5月 2020 |
指纹
探究 'HAUSDORFF MEASURES of A CLASS of MORAN SETS' 的科研主题。它们共同构成独一无二的指纹。引用此
Jiang, X., Liu, Q., Wang, G., & Wen, Z. (2020). HAUSDORFF MEASURES of A CLASS of MORAN SETS. Fractals, 28(3), 文章 2050053. https://doi.org/10.1142/S0218348X2050053X