Hausdorff Dimension of Spectrum of One-Dimensional Schrödinger Operator with Sturmian Potentials

Qing Hui Liu*, Zhi Ying Wen

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

28 引用 (Scopus)

摘要

Let β ∈ (0, 1) be an irrational, and [a1, a 2,...] be the continued fraction expansion of β. Let H β be the one-dimensional Schrödinger operator with Sturmian potentials. We show that if the potential strength V > 20, then the Hausdorff dimension of the spectrum σ (Hβ) is strictly great than zero for any irrational β, and is strictly less than 1 if and only if lim infk→∞ (a1a2 ⋯ ak))1/k < ∞.

源语言英语
页(从-至)33-59
页数27
期刊Potential Analysis
20
1
DOI
出版状态已出版 - 2月 2004

指纹

探究 'Hausdorff Dimension of Spectrum of One-Dimensional Schrödinger Operator with Sturmian Potentials' 的科研主题。它们共同构成独一无二的指纹。

引用此