TY - GEN
T1 - Graph neural news recommendation with unsupervised preference disentanglement
AU - Hu, Linmei
AU - Xu, Siyong
AU - Li, Chen
AU - Yang, Cheng
AU - Shi, Chuan
AU - Duan, Nan
AU - Xie, Xing
AU - Zhou, Ming
N1 - Publisher Copyright:
© 2020 Association for Computational Linguistics
PY - 2020
Y1 - 2020
N2 - With the explosion of news information, personalized news recommendation has become very important for users to quickly find their interested contents. Most existing methods usually learn the representations of users and news from news contents for recommendation. However, they seldom consider high-order connectivity underlying the user-news interactions. Moreover, existing methods failed to disentangle a user's latent preference factors which cause her clicks on different news. In this paper, we model the user-news interactions as a bipartite graph and propose a novel Graph Neural News Recommendation model with Unsupervised Preference Disentanglement, named GNUD. Our model can encode high-order relationships into user and news representations by information propagation along the graph. Furthermore, the learned representations are disentangled with latent preference factors by a neighborhood routing algorithm, which can enhance expressiveness and interpretability. A preference regularizer is also designed to force each disentangled subspace to independently reflect an isolated preference, improving the quality of the disentangled representations. Experimental results on real-world news datasets demonstrate that our proposed model can effectively improve the performance of news recommendation and outperform state-of-the-art news recommendation methods.
AB - With the explosion of news information, personalized news recommendation has become very important for users to quickly find their interested contents. Most existing methods usually learn the representations of users and news from news contents for recommendation. However, they seldom consider high-order connectivity underlying the user-news interactions. Moreover, existing methods failed to disentangle a user's latent preference factors which cause her clicks on different news. In this paper, we model the user-news interactions as a bipartite graph and propose a novel Graph Neural News Recommendation model with Unsupervised Preference Disentanglement, named GNUD. Our model can encode high-order relationships into user and news representations by information propagation along the graph. Furthermore, the learned representations are disentangled with latent preference factors by a neighborhood routing algorithm, which can enhance expressiveness and interpretability. A preference regularizer is also designed to force each disentangled subspace to independently reflect an isolated preference, improving the quality of the disentangled representations. Experimental results on real-world news datasets demonstrate that our proposed model can effectively improve the performance of news recommendation and outperform state-of-the-art news recommendation methods.
UR - http://www.scopus.com/inward/record.url?scp=85107746432&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85107746432
T3 - Proceedings of the Annual Meeting of the Association for Computational Linguistics
SP - 4255
EP - 4264
BT - ACL 2020 - 58th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference
PB - Association for Computational Linguistics (ACL)
T2 - 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020
Y2 - 5 July 2020 through 10 July 2020
ER -