Graph Convolution Reinforcement Learning for Decision-Making in Highway Overtaking Scenario

Meng Xiaoqiang*, Yang Fan, Li Xueyuan, Liu Qi, Gao Xin, Li Zirui

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

Overtaking of autonomous vehicles (AVs) is an extremely complex process, which involves many factors and poses great safety hazards. However, most of the current research does not consider the impact of the dynamic environment on autonomous vehicles. In order to solve the multi-agent overtaking problem on the highway, this paper proposes a decision-making algorithm for AVs. The algorithm is based on graph neural network (GNN) and deep reinforcement learning (DRL), and adopts different training methods including as deep Q network (DQN), double DQN, dueling DQN, and D3QN for simulation. Firstly, the simulation environment is a 3-lane highway constructed in sumo. Secondly, there are both human-driven vehicles (HDVs) and AVs with maximum speeds of 10km/h and 20km/h on the highway. Finally, these two kinds of vehicles will appear in the right lane with different probabilities. The training effect is evaluated by the time it takes for the vehicle to enter and exit the current environment and the average speed of the AV. The simulation results show that the algorithm improves the efficiency of the overtaking process and reduces the accident rate.

源语言英语
主期刊名ICIEA 2022 - Proceedings of the 17th IEEE Conference on Industrial Electronics and Applications
编辑Wenxiang Xie, Shibin Gao, Xiaoqiong He, Xing Zhu, Jingjing Huang, Weirong Chen, Lei Ma, Haiyan Shu, Wenping Cao, Lijun Jiang, Zeliang Shu
出版商Institute of Electrical and Electronics Engineers Inc.
417-422
页数6
ISBN(电子版)9781665409841
DOI
出版状态已出版 - 2022
活动17th IEEE Conference on Industrial Electronics and Applications, ICIEA 2022 - Chengdu, 中国
期限: 16 12月 202219 12月 2022

出版系列

姓名ICIEA 2022 - Proceedings of the 17th IEEE Conference on Industrial Electronics and Applications

会议

会议17th IEEE Conference on Industrial Electronics and Applications, ICIEA 2022
国家/地区中国
Chengdu
时期16/12/2219/12/22

指纹

探究 'Graph Convolution Reinforcement Learning for Decision-Making in Highway Overtaking Scenario' 的科研主题。它们共同构成独一无二的指纹。

引用此