摘要
Convolutional neural networks have been widely used in many deep learning applications. Convolutional neural networks have a large number of convolution operations, which poses a huge challenge to real-time performance. In recent years, FPGA implementations of convolutional accelerators have received much attention due to their high performance and energy efficiency. In this paper, we implement an accelerator for convolution operations through the systolic array architecture on Xilinx ZedBoard device. The experimental results show that ours designed accelerators achieving performance density of up to 0.032 Gop/s/DSP.
源语言 | 英语 |
---|---|
主期刊名 | ICSIDP 2019 - IEEE International Conference on Signal, Information and Data Processing 2019 |
出版商 | Institute of Electrical and Electronics Engineers Inc. |
ISBN(电子版) | 9781728123455 |
DOI | |
出版状态 | 已出版 - 12月 2019 |
活动 | 2019 IEEE International Conference on Signal, Information and Data Processing, ICSIDP 2019 - Chongqing, 中国 期限: 11 12月 2019 → 13 12月 2019 |
出版系列
姓名 | ICSIDP 2019 - IEEE International Conference on Signal, Information and Data Processing 2019 |
---|
会议
会议 | 2019 IEEE International Conference on Signal, Information and Data Processing, ICSIDP 2019 |
---|---|
国家/地区 | 中国 |
市 | Chongqing |
时期 | 11/12/19 → 13/12/19 |
指纹
探究 'FPGA-based accelerator for convolution operations' 的科研主题。它们共同构成独一无二的指纹。引用此
Cao, Y., Wei, X., Qiao, T., & Chen, H. (2019). FPGA-based accelerator for convolution operations. 在 ICSIDP 2019 - IEEE International Conference on Signal, Information and Data Processing 2019 文章 9172934 (ICSIDP 2019 - IEEE International Conference on Signal, Information and Data Processing 2019). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICSIDP47821.2019.9172934