Finding Salient Context based on Semantic Matching for Relevance Ranking

Yuanyuan Qi, Jiayue Zhang, Weiran Xu, Jun Guo, Yan Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

We propose a salient-context based semantic matching method to improve relevance ranking in information retrieval. We first propose a new notion of salient context and then define how to measure it. Then we show how the most salient context can be located with a sliding window technique. Finally, we use the semantic similarity between a query term and the most salient context terms in a corpus of documents to rank those documents. Experiments on various TREC collections show the effectiveness of our model compared to the state-of-The-Art methods.

源语言英语
主期刊名2019 IEEE International Conference on Visual Communications and Image Processing, VCIP 2019
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781728137230
DOI
出版状态已出版 - 12月 2019
活动34th IEEE International Conference on Visual Communications and Image Processing, VCIP 2019 - Sydney, 澳大利亚
期限: 1 12月 20194 12月 2019

出版系列

姓名2019 IEEE International Conference on Visual Communications and Image Processing, VCIP 2019

会议

会议34th IEEE International Conference on Visual Communications and Image Processing, VCIP 2019
国家/地区澳大利亚
Sydney
时期1/12/194/12/19

指纹

探究 'Finding Salient Context based on Semantic Matching for Relevance Ranking' 的科研主题。它们共同构成独一无二的指纹。

引用此