TY - GEN
T1 - Filling Action Selection Reinforcement Learning Algorithm for Safer Autonomous Driving in Multi-Traffic Scenes
AU - Yang, Fan
AU - Li, Xueyuan
AU - Liu, Qi
AU - Liu, Chaoyang
AU - Li, Zirui
AU - Liu, Yong
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Learning-based algorithms are gradually emerging in the field of autonomous driving due to their powerful data processing capabilities. Researchers in the field of intelligent vehicle planning and decision-making are gradually using reinforcement learning algorithms to solve related problems. The safety research of reinforcement learning algorithms is significant and widely concerned. The main reason for the safety problem of the existing reinforcement learning algorithm is that there is still a bias in the safety judgment of the current environment, and it is impossible to make directional improvements by modifying the network and training method. In this paper, an action judgment network is designed as a standard to select the optimal action, which can assist the algorithm to judge environmental safety more deeply. Firstly, the action judgment network takes the state space and action as input, and the output is the safety state of the vehicle after the action. Secondly, this work establishes the required database to train the action judgment network through deep learning and achieves the highest accuracy of 98%. Finally, the proposed algorithm is tested in three scenarios: single-lane, intersection, and roundabout. This algorithm can judge the actions according to the reinforcement learning q value table order until the optimal and safe action is selected. The results show that the newly proposed algorithm can greatly improve the safety of the algorithm without affecting vehicle speed.
AB - Learning-based algorithms are gradually emerging in the field of autonomous driving due to their powerful data processing capabilities. Researchers in the field of intelligent vehicle planning and decision-making are gradually using reinforcement learning algorithms to solve related problems. The safety research of reinforcement learning algorithms is significant and widely concerned. The main reason for the safety problem of the existing reinforcement learning algorithm is that there is still a bias in the safety judgment of the current environment, and it is impossible to make directional improvements by modifying the network and training method. In this paper, an action judgment network is designed as a standard to select the optimal action, which can assist the algorithm to judge environmental safety more deeply. Firstly, the action judgment network takes the state space and action as input, and the output is the safety state of the vehicle after the action. Secondly, this work establishes the required database to train the action judgment network through deep learning and achieves the highest accuracy of 98%. Finally, the proposed algorithm is tested in three scenarios: single-lane, intersection, and roundabout. This algorithm can judge the actions according to the reinforcement learning q value table order until the optimal and safe action is selected. The results show that the newly proposed algorithm can greatly improve the safety of the algorithm without affecting vehicle speed.
KW - Autonomous Driving
KW - DRL
KW - Multiple Traffic Scenarios
KW - Safe Deep Learning
UR - http://www.scopus.com/inward/record.url?scp=85167984239&partnerID=8YFLogxK
U2 - 10.1109/IV55152.2023.10186804
DO - 10.1109/IV55152.2023.10186804
M3 - Conference contribution
AN - SCOPUS:85167984239
T3 - IEEE Intelligent Vehicles Symposium, Proceedings
BT - IV 2023 - IEEE Intelligent Vehicles Symposium, Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 34th IEEE Intelligent Vehicles Symposium, IV 2023
Y2 - 4 June 2023 through 7 June 2023
ER -