TY - GEN
T1 - Few-shot learning of signal modulation recognition based on attention relation network
AU - Zhang, Zilin
AU - Li, Yan
AU - Gao, Meiguo
N1 - Publisher Copyright:
© 2021 European Signal Processing Conference, EUSIPCO. All rights reserved.
PY - 2021/1/24
Y1 - 2021/1/24
N2 - Most of existing signal modulation recognition methods attempt to establish a machine learning mechanism by training with a large number of annotated samples, which is hardly applied to the real-world electronic reconnaissance scenario where only a few samples can be intercepted in advance. Few-Shot Learning (FSL) aims to learn from training classes with a lot of samples and transform the knowledge to support classes with only a few samples, thus realizing model generalization. In this paper, a novel FSL framework called Attention Relation Network (ARN) is proposed, which introduces channel and spatial attention respectively to learn a more effective feature representation of support samples. The experimental results show that the proposed method can achieve excellent performance for fine-grained signal modulation recognition even with only one support sample and is robust to low signal-to-noise-ratio conditions.
AB - Most of existing signal modulation recognition methods attempt to establish a machine learning mechanism by training with a large number of annotated samples, which is hardly applied to the real-world electronic reconnaissance scenario where only a few samples can be intercepted in advance. Few-Shot Learning (FSL) aims to learn from training classes with a lot of samples and transform the knowledge to support classes with only a few samples, thus realizing model generalization. In this paper, a novel FSL framework called Attention Relation Network (ARN) is proposed, which introduces channel and spatial attention respectively to learn a more effective feature representation of support samples. The experimental results show that the proposed method can achieve excellent performance for fine-grained signal modulation recognition even with only one support sample and is robust to low signal-to-noise-ratio conditions.
KW - Attention
KW - Few-Shot Learning
KW - Signal Modulation Recognition
UR - http://www.scopus.com/inward/record.url?scp=85099307772&partnerID=8YFLogxK
U2 - 10.23919/Eusipco47968.2020.9287608
DO - 10.23919/Eusipco47968.2020.9287608
M3 - Conference contribution
AN - SCOPUS:85099307772
T3 - European Signal Processing Conference
SP - 1372
EP - 1376
BT - 28th European Signal Processing Conference, EUSIPCO 2020 - Proceedings
PB - European Signal Processing Conference, EUSIPCO
T2 - 28th European Signal Processing Conference, EUSIPCO 2020
Y2 - 24 August 2020 through 28 August 2020
ER -