Federated Learning With Heterogeneity-Aware Probabilistic Synchronous Parallel on Edge

Jianxin Zhao, Rui Han, Yongkai Yang*, Benjamin Catterall, Chi Harold Liu, Lydia Y. Chen, Richard Mortier, Jon Crowcroft, Liang Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

11 引用 (Scopus)

摘要

With the massive amount of data generated from mobile devices and the increase of computing power of edge devices, the paradigm of Federated Learning has attracted great momentum. In federated learning, distributed and heterogeneous nodes collaborate to learn model parameters. However, while providing benefits such as privacy by design and reduced latency, the heterogeneous network present challenges to the synchronisation methods, or barrier control methods, used in training, regarding system progress and model convergence etc. The design of these barrier mechanisms is critical for the performance and scalability of federated learning systems. We propose a new barrier control technique called Probabilistic Synchronous Parallel (PSP). In contrast to existing mechanisms, it introduces a sampling primitive that composes with existing barrier control mechanisms to produce a family of mechanisms with improved convergence speed and scalability. Our proposal is supported with a convergence analysis of PSP-based SGD algorithm. In practice, we also propose heuristic techniques that further improve the efficiency of PSP. We evaluate the performance of proposed methods using the federated learning specific FEMNSIT dataset. The evaluation results show that PSP can effectively achieve good balance between system efficiency and model accuracy, mitigating the challenge of heterogeneity in federated learning.

源语言英语
页(从-至)614-626
页数13
期刊IEEE Transactions on Services Computing
15
2
DOI
出版状态已出版 - 2022

指纹

探究 'Federated Learning With Heterogeneity-Aware Probabilistic Synchronous Parallel on Edge' 的科研主题。它们共同构成独一无二的指纹。

引用此