Extendible ghost imaging with high reconstruction quality in strong scattering medium

Gao Ziqi, Xuemin Cheng*, Yue Junbai, Qun Hao

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

7 引用 (Scopus)

摘要

Ghost imaging (GI) possesses significant application prospects in scattering imaging, which is a classic example of underdetermined conversion problem in optical field. However, even under the framework of single-pixel imaging (SPI), a challenge remains unresolved, i.e., structured patterns may be damaged by scattering media in both the emissive and receiving optical paths. In this study, an extendible ghost imaging, a numerical reproduction of the qualitative process using deep learning (DL)-based GI is presented. First, we propose and experimentally verify a brief degradation-guided reconstruction (DR) approach with a neural network to demonstrate the degradation principle of scattering, including realistic dataset simulations and a new training structure in the form of a convolutional neural network (CNN). Then, a novel photon contribution model (PCM) with redundant parameters is proposed to generate intensity sequences from the forward direction through volumetric scattering media; the redundant parameters are constructed and relate to the special output configuration in a lightweight CNN with two branches, based on a reformulated atmospheric scattering model. The proposed scheme recovers the semantics of targets and suppresses the imaging noise in the strong scattering medium, and the obtained results are very satisfactory for applications to scattering media of more practical scenarios and are available for various scattering coefficients and work distances of an imaging prototype. After using DL methods in computational imaging, we conclude that strategies embedded in optics or broader physical factors can result in solutions with better effects for unanalyzable processes.

源语言英语
页(从-至)45759-45775
页数17
期刊Optics Express
30
25
DOI
出版状态已出版 - 5 12月 2022

指纹

探究 'Extendible ghost imaging with high reconstruction quality in strong scattering medium' 的科研主题。它们共同构成独一无二的指纹。

引用此