摘要
N-doped graphene displays many interesting properties compared with pristine graphene, which makes it a potential candidate in many applications. Here, we report that the Shubnikov-de Haas (SdH) oscillation effect in graphene can be enhanced by N-doping. We show that the amplitude of the SdH oscillation increases with N-doping and reaches around 5k ω under a field of 14 T at 10 K for highly N-doped graphene, which is over 1 order of magnitude larger than the value found for pristine graphene devices with the same geometry. Moreover, in contrast to the well-established standard Lifshitz-Kosevich theory, the amplitude of the SdH oscillation decreases linearly with increasing temperature and persists up to a temperature of 150 K. Our results also show that the magnetoresistance (MR) in N-doped graphene increases with increasing temperature. Our results may be useful for the application of N-doped graphene in magnetic devices.
源语言 | 英语 |
---|---|
页(从-至) | 7207-7214 |
页数 | 8 |
期刊 | ACS Nano |
卷 | 9 |
期 | 7 |
DOI | |
出版状态 | 已出版 - 28 7月 2015 |