Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles

Yang Guo, Bin Li, Yuan Huang, Shuo Du, Chi Sun, Hailan Luo, Baoli Liu, Xingjiang Zhou, Jinlong Yang, Junjie Li, Changzhi Gu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

25 引用 (Scopus)

摘要

Strain engineering provides an important strategy to modulate the optical and electrical properties of semiconductors for improving devices performance with mechanical force or thermal expansion difference. Here, we present the investigation of the local strain distribution over few-layer MoS2 bubbles, by using scanning photoluminescence and Raman spectroscopies. We observe the obvious direct bandgap emissions with strain in the few-layer MoS2 bubble and the strain-induced continuous energy shifts of both resonant excitons and vibrational modes from the edge of the MoS2 bubble to the center (10 µm scale), associated with the oscillations resulted from the optical interference-induced temperature distribution. To understand these results, we perform ab initio simulations to calculate the electronic and vibrational properties of few-layer MoS2 with biaxial tensile strain, based on density functional theory, finding good agreement with the experimental results. Our study suggests that local strain offers a convenient way to continuously tune the physical properties of a few-layer transition metal dichalcogenides (TMDs) semiconductor, and opens up new possibilities for band engineering within the 2D plane. [Figure not available: see fulltext.].

源语言英语
页(从-至)2072-2078
页数7
期刊Nano Research
13
8
DOI
出版状态已出版 - 1 8月 2020
已对外发布

指纹

探究 'Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles' 的科研主题。它们共同构成独一无二的指纹。

引用此