Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles

Yang Guo, Bin Li, Yuan Huang, Shuo Du, Chi Sun, Hailan Luo, Baoli Liu, Xingjiang Zhou, Jinlong Yang, Junjie Li, Changzhi Gu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 26
  • Usage
    • Downloads: 20
    • Abstract Views: 4
  • Captures
    • Readers: 29
see details

Abstract

Strain engineering provides an important strategy to modulate the optical and electrical properties of semiconductors for improving devices performance with mechanical force or thermal expansion difference. Here, we present the investigation of the local strain distribution over few-layer MoS2 bubbles, by using scanning photoluminescence and Raman spectroscopies. We observe the obvious direct bandgap emissions with strain in the few-layer MoS2 bubble and the strain-induced continuous energy shifts of both resonant excitons and vibrational modes from the edge of the MoS2 bubble to the center (10 µm scale), associated with the oscillations resulted from the optical interference-induced temperature distribution. To understand these results, we perform ab initio simulations to calculate the electronic and vibrational properties of few-layer MoS2 with biaxial tensile strain, based on density functional theory, finding good agreement with the experimental results. Our study suggests that local strain offers a convenient way to continuously tune the physical properties of a few-layer transition metal dichalcogenides (TMDs) semiconductor, and opens up new possibilities for band engineering within the 2D plane. [Figure not available: see fulltext.].

Original languageEnglish
Pages (from-to)2072-2078
Number of pages7
JournalNano Research
Volume13
Issue number8
DOIs
Publication statusPublished - 1 Aug 2020
Externally publishedYes

Keywords

  • 2D layered materials
  • band engineering
  • local strain
  • transition metal dichalcogenides

Fingerprint

Dive into the research topics of 'Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles'. Together they form a unique fingerprint.

Cite this

Guo, Y., Li, B., Huang, Y., Du, S., Sun, C., Luo, H., Liu, B., Zhou, X., Yang, J., Li, J., & Gu, C. (2020). Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles. Nano Research, 13(8), 2072-2078. https://doi.org/10.1007/s12274-020-2809-6