Detail-Preserving Transformer for Light Field Image Super-resolution

Shunzhou Wang, Tianfei Zhou, Yao Lu*, Huijun Di

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

84 引用 (Scopus)

摘要

Recently, numerous algorithms have been developed to tackle the problem of light field super-resolution (LFSR), i.e., super-resolving low-resolution light fields to gain high-resolution views. Despite delivering encouraging results, these approaches are all convolution-based, and are naturally weak in global relation modeling of sub-aperture images necessarily to characterize the inherent structure of light fields. In this paper, we put forth a novel formulation built upon Transformers, by treating LFSR as a sequence-to-sequence reconstruction task. In particular, our model regards sub-aperture images of each vertical or horizontal angular view as a sequence, and establishes long-range geometric dependencies within each sequence via a spatial-angular locally-enhanced self-attention layer, which maintains the locality of each sub-aperture image as well. Additionally, to better recover image details, we propose a detail-preserving Transformer (termed as DPT), by leveraging gradient maps of light field to guide the sequence learning. DPT consists of two branches, with each associated with a Transformer for learning from an original or gradient image sequence. The two branches are finally fused to obtain comprehensive feature representations for reconstruction. Evaluations are conducted on a number of light field datasets, including real-world scenes and synthetic data. The proposed method achieves superior performance comparing with other state-of-the-art schemes. Our code is publicly available at: https://github.com/BITszwang/DPT.

源语言英语
主期刊名AAAI-22 Technical Tracks 3
出版商Association for the Advancement of Artificial Intelligence
2522-2530
页数9
ISBN(电子版)1577358767, 9781577358763
出版状态已出版 - 30 6月 2022
活动36th AAAI Conference on Artificial Intelligence, AAAI 2022 - Virtual, Online
期限: 22 2月 20221 3月 2022

出版系列

姓名Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022
36

会议

会议36th AAAI Conference on Artificial Intelligence, AAAI 2022
Virtual, Online
时期22/02/221/03/22

指纹

探究 'Detail-Preserving Transformer for Light Field Image Super-resolution' 的科研主题。它们共同构成独一无二的指纹。

引用此