Defect engineering-mediated Co9S8 with unexpected catalytic selectivity for heterogeneous Fenton-like reaction: Unveiling the generation route of 1O2 in VS active site

Zhimo Fang, Juanjuan Qi*, Wenxing Chen, Lin Zhang, Jianhui Wang, Caili Tian, Qin Dai, Wen Liu, Lidong Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

20 引用 (Scopus)

摘要

Singlet oxygen (1O2) plays a crucial role in Fenton-like reactions due to its high efficiency and selectivity in removing trace organic pollutants from complex water matrices. Defect engineering, which allows the efficient exposure of active sites and optimization of electronic structures, has rapidly emerged as a fundamental strategy for enhancing 1O2 yield. Herein, we introduce tunable sulfur vacancy (VS) density into Co9S8 catalysts for peroxymonosulfate (PMS) activation. The modulation of the octahedral Co (CoS6) and tetrahedral Co (CoS4) electronic structures by VS triggers the unexpected selective generation of 1O2. The VS/PMS system exhibits excellent resistance to interference and highly selective degradation of electron-donating organic pollutants. Experimental and theoretical calculations revealed a new evolutionary route for 1O2 involving two phases (Phase I: HSO5 → *O, Phase II: *O + HSO5 →*OO → 1O2). This study provides a molecular-level understanding of VS-mediated catalytic selectivity for high-efficient decontamination applications.

源语言英语
文章编号123084
期刊Applied Catalysis B: Environmental
338
DOI
出版状态已出版 - 5 12月 2023

指纹

探究 'Defect engineering-mediated Co9S8 with unexpected catalytic selectivity for heterogeneous Fenton-like reaction: Unveiling the generation route of 1O2 in VS active site' 的科研主题。它们共同构成独一无二的指纹。

引用此