摘要
Deep neural network (DNN) has been used as a learning model for modeling the hierarchical architecture of human brain. However, DNN suffers from problems of learning efficiency and computational complexity.
源语言 | 英语 |
---|---|
主期刊名 | Studies in Computational Intelligence |
出版商 | Springer Science and Business Media Deutschland GmbH |
页 | 25-39 |
页数 | 15 |
DOI | |
出版状态 | 已出版 - 2021 |
已对外发布 | 是 |
出版系列
姓名 | Studies in Computational Intelligence |
---|---|
卷 | 926 |
ISSN(印刷版) | 1860-949X |
ISSN(电子版) | 1860-9503 |
指纹
探究 'Deep Sparse Autoencoder Network for Facial Emotion Recognition' 的科研主题。它们共同构成独一无二的指纹。引用此
Chen, L., Wu, M., Pedrycz, W., & Hirota, K. (2021). Deep Sparse Autoencoder Network for Facial Emotion Recognition. 在 Studies in Computational Intelligence (页码 25-39). (Studies in Computational Intelligence; 卷 926). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-61577-2_3