Deep Sparse Autoencoder Network for Facial Emotion Recognition

Luefeng Chen*, Min Wu, Witold Pedrycz, Kaoru Hirota

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

4 Citations (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 4
  • Captures
    • Readers: 5
see details

Abstract

Deep neural network (DNN) has been used as a learning model for modeling the hierarchical architecture of human brain. However, DNN suffers from problems of learning efficiency and computational complexity.

Original languageEnglish
Title of host publicationStudies in Computational Intelligence
PublisherSpringer Science and Business Media Deutschland GmbH
Pages25-39
Number of pages15
DOIs
Publication statusPublished - 2021
Externally publishedYes

Publication series

NameStudies in Computational Intelligence
Volume926
ISSN (Print)1860-949X
ISSN (Electronic)1860-9503

Fingerprint

Dive into the research topics of 'Deep Sparse Autoencoder Network for Facial Emotion Recognition'. Together they form a unique fingerprint.

Cite this

Chen, L., Wu, M., Pedrycz, W., & Hirota, K. (2021). Deep Sparse Autoencoder Network for Facial Emotion Recognition. In Studies in Computational Intelligence (pp. 25-39). (Studies in Computational Intelligence; Vol. 926). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-61577-2_3