Data mining and knowledge discovery

Shuliang Wang, Wenzhong Shi

科研成果: 书/报告/会议事项章节章节同行评审

7 引用 (Scopus)

摘要

In this chapter, data mining and knowledge discovery (DMKD) Data Mining and Knowledge Discovery (DMKD) is presented with basic concepts, a brief history of its evolution, mathematical foundations, and usable techniques, along with the data warehouse and the decision support system (DSS). Decision Support System (DSS) First, dataset and knowledge dataset and knowledge will be defined and elucidated as under DMKD. DMKD is a discovery process with different hierarchies, granularities, and/or scales. For a set of concepts that may be best understood if being viewed and explained from various perspectives, the chapter starts with a definition followed by a table explaining DMKD from different views (Sect. 5.1). The evolution of DMKD is then briefly tracked from the rapid advance in massive data to the birth of DMKD (Sect. 5.2). Some mathematical foundations are given in Sect. 5.3, i.e. probability probability theory theory, statistics, fuzzy fuzzy set set fuzzy set, rough rough set set, data fields, data field and cloud cloud model models. Section 5.4 introduces some usable DMKD techniques. DMKD is used to discover a set of rules Data Mining and Knowledge Discovery (DMKD) set of rules and exceptions with association, classification, clustering, prediction, discrimination, and exception exception detection detection. In Sects. 5.5 and 5.6, data warehouses data warehouse and decision support systems Decision Support System (DSS) are given. The first one mentioned is one of the data sources for DMKD, and DMKD is a new technique to assist the latter with a task. Finally, trends and perspectives are summarized and forecasted into two promising fields, Web mining web mining and spatial data mining spatial data mining (Sect. 5.7).

源语言英语
主期刊名Springer Handbook of Geographic Information
出版商Springer Berlin Heidelberg
123-142
页数20
ISBN(电子版)9783540726807
ISBN(印刷版)9783540726784
DOI
出版状态已出版 - 1 1月 2012
已对外发布

指纹

探究 'Data mining and knowledge discovery' 的科研主题。它们共同构成独一无二的指纹。

引用此