TY - GEN
T1 - Cross-view action recognition over heterogeneous feature spaces
AU - Wu, Xinxiao
AU - Wang, Han
AU - Liu, Cuiwei
AU - Jia, Yunde
PY - 2013
Y1 - 2013
N2 - In cross-view action recognition, 'what you saw' in one view is different from 'what you recognize' in another view. The data distribution even the feature space can change from one view to another due to the appearance and motion of actions drastically vary across different views. In this paper, we address the problem of transferring action models learned in one view (source view) to another different view (target view), where action instances from these two views are represented by heterogeneous features. A novel learning method, called Heterogeneous Transfer Discriminantanalysis of Canonical Correlations (HTDCC), is proposed to learn a discriminative common feature space for linking source and target views to transfer knowledge between them. Two projection matrices that respectively map data from source and target views into the common space are optimized via simultaneously minimizing the canonical correlations of inter-class samples and maximizing the intraclass canonical correlations. Our model is neither restricted to corresponding action instances in the two views nor restricted to the same type of feature, and can handle only a few or even no labeled samples available in the target view. To reduce the data distribution mismatch between the source and target views in the common feature space, a nonparametric criterion is included in the objective function. We additionally propose a joint weight learning method to fuse multiple source-view action classifiers for recognition in the target view. Different combination weights are assigned to different source views, with each weight presenting how contributive the corresponding source view is to the target view. The proposed method is evaluated on the IXMAS multi-view dataset and achieves promising results.
AB - In cross-view action recognition, 'what you saw' in one view is different from 'what you recognize' in another view. The data distribution even the feature space can change from one view to another due to the appearance and motion of actions drastically vary across different views. In this paper, we address the problem of transferring action models learned in one view (source view) to another different view (target view), where action instances from these two views are represented by heterogeneous features. A novel learning method, called Heterogeneous Transfer Discriminantanalysis of Canonical Correlations (HTDCC), is proposed to learn a discriminative common feature space for linking source and target views to transfer knowledge between them. Two projection matrices that respectively map data from source and target views into the common space are optimized via simultaneously minimizing the canonical correlations of inter-class samples and maximizing the intraclass canonical correlations. Our model is neither restricted to corresponding action instances in the two views nor restricted to the same type of feature, and can handle only a few or even no labeled samples available in the target view. To reduce the data distribution mismatch between the source and target views in the common feature space, a nonparametric criterion is included in the objective function. We additionally propose a joint weight learning method to fuse multiple source-view action classifiers for recognition in the target view. Different combination weights are assigned to different source views, with each weight presenting how contributive the corresponding source view is to the target view. The proposed method is evaluated on the IXMAS multi-view dataset and achieves promising results.
UR - http://www.scopus.com/inward/record.url?scp=84898794950&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2013.81
DO - 10.1109/ICCV.2013.81
M3 - Conference contribution
AN - SCOPUS:84898794950
SN - 9781479928392
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 609
EP - 616
BT - Proceedings - 2013 IEEE International Conference on Computer Vision, ICCV 2013
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2013 14th IEEE International Conference on Computer Vision, ICCV 2013
Y2 - 1 December 2013 through 8 December 2013
ER -