摘要
In order to control the vehicle body position precisely, 1/4 nonlinear mathematical model of hydro-pneumatic suspension is established, and the influence of the frictional force in a hydraulic cylinder is analyzed. The friction characteristics are described based on the LuGre model when the piston of a hydraulic actuator is operated at a low speed. Due to the fact parameters of the friction model are effected by the system condition, an adaptive friction compensation (AFC) controller is designed through the Backstepping method, and a dual-observer has been implemented to estimate the friction state. The global asymptotic convergence of a closed-loop system is proven by the Lyapunov theorem. The simulation results show that the positional accuracy of the adaptive friction compensation yiedls a significant improvement in the vehicle height adjustment as compared to the PID control, demonstrating the effectiveness of the adaptive fiction compensation method in the vehicle height adjustable system of the hydro-pneumatic suspension.
源语言 | 英语 |
---|---|
页(从-至) | 49-55 |
页数 | 7 |
期刊 | Journal of Beijing Institute of Technology (English Edition) |
卷 | 25 |
期 | 1 |
DOI | |
出版状态 | 已出版 - 1 3月 2016 |