TY - JOUR
T1 - Continuous estimation of knee joint angle based on surface electromyography using a long short-term memory neural network and time-advanced feature
AU - Ma, Xunju
AU - Liu, Yali
AU - Song, Qiuzhi
AU - Wang, Can
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/9/1
Y1 - 2020/9/1
N2 - Continuous joint angle estimation based on a surface electromyography (sEMG) signal can be used to improve the man-machine coordination performance of the exoskeleton. In this study, we proposed a time-advanced feature and utilized long short-term memory (LSTM) with a root mean square (RMS) feature and its time-advanced feature (RMSTAF; collectively referred to as RRTAF) of sEMG to estimate the knee joint angle. To evaluate the effect of joint angle estimation, we used root mean square error (RMSE) and cross-correlation coefficient ρ between the estimated angle and actual angle. We also compared three methods (i.e., LSTM using RMS, BPNN (back propagation neural network) using RRTAF, and BPNN using RMS) with LSTM using RRTAF to highlight its good performance. Five healthy subjects participated in the experiment and their eight muscle (i.e., rectus femoris (RF), biceps femoris (BF), semitendinosus (ST), gracilis (GC), semimembranosus (SM), sartorius (SR), medial gastrocnemius (MG), and tibialis anterior (TA)) sEMG signals were taken as algorithm inputs. Moreover, the knee joint angles were used as target values. The experimental results showed that, compared with LSTM using RMS, BPNN using RRTAF, and BPNN using RMS, the average RMSE values of LSTM using RRTAF were respectively reduced by 8.57%, 46.62%, and 68.69%, whereas the average ρ values were respectively increased by 0.31%, 4.15%, and 18.35%. The results demonstrated that LSTM using RRTAF, which contained the time-advanced feature, had better performance for estimating the knee joint motion.
AB - Continuous joint angle estimation based on a surface electromyography (sEMG) signal can be used to improve the man-machine coordination performance of the exoskeleton. In this study, we proposed a time-advanced feature and utilized long short-term memory (LSTM) with a root mean square (RMS) feature and its time-advanced feature (RMSTAF; collectively referred to as RRTAF) of sEMG to estimate the knee joint angle. To evaluate the effect of joint angle estimation, we used root mean square error (RMSE) and cross-correlation coefficient ρ between the estimated angle and actual angle. We also compared three methods (i.e., LSTM using RMS, BPNN (back propagation neural network) using RRTAF, and BPNN using RMS) with LSTM using RRTAF to highlight its good performance. Five healthy subjects participated in the experiment and their eight muscle (i.e., rectus femoris (RF), biceps femoris (BF), semitendinosus (ST), gracilis (GC), semimembranosus (SM), sartorius (SR), medial gastrocnemius (MG), and tibialis anterior (TA)) sEMG signals were taken as algorithm inputs. Moreover, the knee joint angles were used as target values. The experimental results showed that, compared with LSTM using RMS, BPNN using RRTAF, and BPNN using RMS, the average RMSE values of LSTM using RRTAF were respectively reduced by 8.57%, 46.62%, and 68.69%, whereas the average ρ values were respectively increased by 0.31%, 4.15%, and 18.35%. The results demonstrated that LSTM using RRTAF, which contained the time-advanced feature, had better performance for estimating the knee joint motion.
KW - Estimation
KW - Feature
KW - LSTM
KW - SEMG
KW - Time-advance
UR - http://www.scopus.com/inward/record.url?scp=85090095461&partnerID=8YFLogxK
U2 - 10.3390/s20174966
DO - 10.3390/s20174966
M3 - Article
C2 - 32887326
AN - SCOPUS:85090095461
SN - 1424-8220
VL - 20
SP - 1
EP - 18
JO - Sensors
JF - Sensors
IS - 17
M1 - 4966
ER -