Continuous estimation of knee joint angle based on surface electromyography using a long short-term memory neural network and time-advanced feature

Xunju Ma, Yali Liu*, Qiuzhi Song, Can Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)

Abstract

Continuous joint angle estimation based on a surface electromyography (sEMG) signal can be used to improve the man-machine coordination performance of the exoskeleton. In this study, we proposed a time-advanced feature and utilized long short-term memory (LSTM) with a root mean square (RMS) feature and its time-advanced feature (RMSTAF; collectively referred to as RRTAF) of sEMG to estimate the knee joint angle. To evaluate the effect of joint angle estimation, we used root mean square error (RMSE) and cross-correlation coefficient ρ between the estimated angle and actual angle. We also compared three methods (i.e., LSTM using RMS, BPNN (back propagation neural network) using RRTAF, and BPNN using RMS) with LSTM using RRTAF to highlight its good performance. Five healthy subjects participated in the experiment and their eight muscle (i.e., rectus femoris (RF), biceps femoris (BF), semitendinosus (ST), gracilis (GC), semimembranosus (SM), sartorius (SR), medial gastrocnemius (MG), and tibialis anterior (TA)) sEMG signals were taken as algorithm inputs. Moreover, the knee joint angles were used as target values. The experimental results showed that, compared with LSTM using RMS, BPNN using RRTAF, and BPNN using RMS, the average RMSE values of LSTM using RRTAF were respectively reduced by 8.57%, 46.62%, and 68.69%, whereas the average ρ values were respectively increased by 0.31%, 4.15%, and 18.35%. The results demonstrated that LSTM using RRTAF, which contained the time-advanced feature, had better performance for estimating the knee joint motion.

Original languageEnglish
Article number4966
Pages (from-to)1-18
Number of pages18
JournalSensors
Volume20
Issue number17
DOIs
Publication statusPublished - 1 Sept 2020

Keywords

  • Estimation
  • Feature
  • LSTM
  • SEMG
  • Time-advance

Fingerprint

Dive into the research topics of 'Continuous estimation of knee joint angle based on surface electromyography using a long short-term memory neural network and time-advanced feature'. Together they form a unique fingerprint.

Cite this