Constructing van der Waals heterostructures by dry-transfer assembly for novel optoelectronic device

Huihan Li, Xiaolu Xiong, Fei Hui, Dongliang Yang, Jinbao Jiang, Wanxiang Feng, Junfeng Han, Junxi Duan, Zhongrui Wang*, Linfeng Sun*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

11 引用 (Scopus)

摘要

Since the first successful exfoliation of graphene, the superior physical and chemical properties of two-dimensional (2D) materials, such as atomic thickness, strong in-plane bonding energy and weak inter-layer van der Waals (vdW) force have attracted wide attention. Meanwhile, there is a surge of interest in novel physics which is absent in bulk materials. Thus, vertical stacking of 2D materials could be critical to discover such physics and develop novel optoelectronic applications. Although vdW heterostructures have been grown by chemical vapor deposition, the available choices of materials for stacking is limited and the device yield is yet to be improved. Another approach to build vdW heterostructure relies on wet/dry transfer techniques like stacking Lego bricks. Although previous reviews have surveyed various wet transfer techniques, novel dry transfer techniques have been recently been demonstrated, featuring clean and sharp interfaces, which also gets rid of contamination, wrinkles, bubbles formed during wet transfer. This review summarizes the optimized dry transfer methods, which paves the way towards high-quality 2D material heterostructures with optimized interfaces. Such transfer techniques also lead to new physical phenomena while enable novel optoelectronic applications on artificial vdW heterostructures, which are discussed in the last part of this review.

源语言英语
文章编号465601
期刊Nanotechnology
33
46
DOI
出版状态已出版 - 12 11月 2022

指纹

探究 'Constructing van der Waals heterostructures by dry-transfer assembly for novel optoelectronic device' 的科研主题。它们共同构成独一无二的指纹。

引用此