摘要
Let Mn+11(c) be an (n + 1)-dimensional Lorentzian space form and C(Mn+11(c)) denote the conformal transformation group of Mn+11(c). A spacelike hypersurface f: Mn→ Mn+11(c) is called a conformal homo- geneous spacelike hypersurface, If there exists a subgroup G ⊂ C(Mn+11(c)) such that the orbit G(p) = f(Mn), p ∈ f(Mn). In this paper, we classify completely all conformal homogeneous spacelike hypersurfaces with two distinct principal curvatures under the conformal transformation group of Mn+11(c) when the dimension n ≥ 3.
源语言 | 英语 |
---|---|
页(从-至) | 935-951 |
页数 | 17 |
期刊 | Houston Journal of Mathematics |
卷 | 46 |
期 | 4 |
出版状态 | 已出版 - 2020 |
指纹
探究 'Conformal homogeneous spacelike hypersurfaces with two distinct principal curvatures in Lorentzian space forms' 的科研主题。它们共同构成独一无二的指纹。引用此
Ji, X., & Li, T. (2020). Conformal homogeneous spacelike hypersurfaces with two distinct principal curvatures in Lorentzian space forms. Houston Journal of Mathematics, 46(4), 935-951.