Conformal homogeneous spacelike hypersurfaces with two distinct principal curvatures in Lorentzian space forms

Xiu Ji, Tongzhu Li

科研成果: 期刊稿件文章同行评审

摘要

Let Mn+11(c) be an (n + 1)-dimensional Lorentzian space form and C(Mn+11(c)) denote the conformal transformation group of Mn+11(c). A spacelike hypersurface f: Mn→ Mn+11(c) is called a conformal homo- geneous spacelike hypersurface, If there exists a subgroup G ⊂ C(Mn+11(c)) such that the orbit G(p) = f(Mn), p ∈ f(Mn). In this paper, we classify completely all conformal homogeneous spacelike hypersurfaces with two distinct principal curvatures under the conformal transformation group of Mn+11(c) when the dimension n ≥ 3.

源语言英语
页(从-至)935-951
页数17
期刊Houston Journal of Mathematics
46
4
出版状态已出版 - 2020

指纹

探究 'Conformal homogeneous spacelike hypersurfaces with two distinct principal curvatures in Lorentzian space forms' 的科研主题。它们共同构成独一无二的指纹。

引用此