Community detection using parallel genetic algorithms

Yulong Song*, Jianwu Li, Xiao Zhang, Chunxue Liu

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

The main problem on community detection using traditional genetic algorithms (GA) lies in the slow speed of convergence. This paper attempts to apply parallel genetic algorithms (PGA) to explore community structure in complex networks in order to improve the efficiency of traditional genetic algorithms. Several different designing ways of PGA are discussed and compared. Experimental results based on the GN benchmark networks, LFR benchmark networks, and eight real-world networks, confirm the PGA with coarse-grained-master-slave hybrid model spends less time yet achieves higher accuracy than traditional genetic algorithms.

源语言英语
主期刊名2012 IEEE 5th International Conference on Advanced Computational Intelligence, ICACI 2012
374-378
页数5
DOI
出版状态已出版 - 2012
活动2012 IEEE 5th International Conference on Advanced Computational Intelligence, ICACI 2012 - Nanjing, 中国
期限: 18 10月 201220 10月 2012

出版系列

姓名2012 IEEE 5th International Conference on Advanced Computational Intelligence, ICACI 2012

会议

会议2012 IEEE 5th International Conference on Advanced Computational Intelligence, ICACI 2012
国家/地区中国
Nanjing
时期18/10/1220/10/12

指纹

探究 'Community detection using parallel genetic algorithms' 的科研主题。它们共同构成独一无二的指纹。

引用此