摘要
The closure $$\mathrm{cl}(G)$$cl(G) of a claw-free graph $$G$$G is the graph obtained from $$G$$G by a series of local completions at eligible vertices, as long as this is possible. The construction of an SM-closure of $$G$$G follows the same operations, but if $$G$$G is not Hamilton-connected, then the construction terminates once every local completion at an eligible vertex leads to a Hamilton-connected graph. Although [see e.g. Ryjáček and Vrána (J Graph Theory 66:137–151, 2011)] $$\mathrm{cl}(G)$$cl(G) may be Hamilton-connected even if $$G$$G is not, we show that if $$G$$G is a 2-connected claw-free graph with minimum degree at least 3 such that its SM-closure is hourglass-free, then $$G$$G is Hamilton-connected if and only if the closure $$\mathrm{cl}(G)$$cl(G) of $$G$$G is Hamilton-connected.
源语言 | 英语 |
---|---|
页(从-至) | 2369-2376 |
页数 | 8 |
期刊 | Graphs and Combinatorics |
卷 | 31 |
期 | 6 |
DOI | |
出版状态 | 已出版 - 5 11月 2014 |