摘要
Let x : Mn → Sn+1 be an immersed hypersurface in the (n+1)-dimensional sphere Sn+1. If, for any two points p; q 2 Mn, there exists a Möbius transformation φ : Sn+1 → Sn+1 such that φ o x(Mn) = x(Mn) and φ o x(p) = x(q), then the hypersurface is called a Möbius homogeneous hypersurface. In this paper, We classify completely the Möbius homogeneous hypersurfaces in the 5-dimensional sphere S5 up to a Möbius transformation.
源语言 | 英语 |
---|---|
页(从-至) | 1127-1146 |
页数 | 20 |
期刊 | Houston Journal of Mathematics |
卷 | 40 |
期 | 4 |
出版状态 | 已出版 - 2014 |
指纹
探究 'Classification of Möbius homogeneous hypersurfaces in a 5-dimensional sphere' 的科研主题。它们共同构成独一无二的指纹。引用此
Li, T., & Wang, C. (2014). Classification of Möbius homogeneous hypersurfaces in a 5-dimensional sphere. Houston Journal of Mathematics, 40(4), 1127-1146.