Classification of hypersurfaces with constant Möbius Ricci curvature in ℝn+1

Zhen Guo, Tongzhu Li, Changping Wang

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

Let f : Mn → ℝn+1 be an immersed umbilic-free hypersurface in an (n + 1)-dimensional Euclidean space ℝn+1 with standard metric I = df · df. Let II be the second fundamental form of the hypersurface f . One can define the Möbius metric g = n/n-1 (∥II∥2 - n∥trII∥2)I on f which is invariant under the conformal transformations (or the Möbius transformations) of ℝn+1. The sectional curvature, Ricci curvature with respect to the Möbius metric g is called Möbius sectional curvature, Möbius Ricci curvature, respectively. The purpose of this paper is to classify hypersurfaces with constant Möbius Ricci curvature.

源语言英语
页(从-至)383-403
页数21
期刊Tohoku Mathematical Journal
67
3
DOI
出版状态已出版 - 2015

指纹

探究 'Classification of hypersurfaces with constant Möbius Ricci curvature in ℝn+1' 的科研主题。它们共同构成独一无二的指纹。

引用此