Classification of hypersurfaces with constant Möbius curvature in S m+1

Zhen Guo*, Tongzhu Li, Limiao Lin, Xiang Ma, Changping Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

15 引用 (Scopus)

摘要

Let x: M m → S m+1 be an m-dimensional umbilic-free hypersurface in an (m + 1)-dimensional unit sphere S m+1, with standard metric I = dx · dx. Let II be the second fundamental form of isometric immersion x. Define the positive function. Then positive definite (0,2) tensor g = ρ 2}I is invariant under conformal transformations of S m+1 and is called Möbius metric. The curvature induced by the metric g is called Möbius curvature. The purpose of this paper is to classify the hypersurfaces with constant Möbius curvature.

源语言英语
页(从-至)193-219
页数27
期刊Mathematische Zeitschrift
271
1-2
DOI
出版状态已出版 - 6月 2012

指纹

探究 'Classification of hypersurfaces with constant Möbius curvature in S m+1' 的科研主题。它们共同构成独一无二的指纹。

引用此