Causal Intervention and Counterfactual Reasoning for Multi-modal Fake News Detection

Ziwei Chen, Linmei Hu*, Weixin Li, Yingxia Shao, Liqiang Nie

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

19 引用 (Scopus)

摘要

Due to the rapid upgrade of social platforms, most of today's fake news is published and spread in a multi-modal form. Most existing multi-modal fake news detection methods neglect the fact that some label-specific features learned from the training set cannot generalize well to the testing set, thus inevitably suffering from the harm caused by the latent data bias. In this paper, we analyze and identify the psycholinguistic bias in the text and the bias of inferring news label based on only image features. We mitigate these biases from a causality perspective and propose a Causal intervention and Counterfactual reasoning based Debiasing framework (CCD) for multi-modal fake news detection. To achieve our goal, we first utilize causal intervention to remove the psycholinguistic bias which introduces the spurious correlations between text features and news label. And then, we apply counterfactual reasoning by imagining a counterfactual world where each news has only image features for estimating the direct effect of the image. Therefore we can eliminate the image-only bias by deducting the direct effect of the image from the total effect on labels. Extensive experiments on two real-world benchmark datasets demonstrate the effectiveness of our framework for improving multi-modal fake news detection.

源语言英语
主期刊名Long Papers
出版商Association for Computational Linguistics (ACL)
627-638
页数12
ISBN(电子版)9781959429722
出版状态已出版 - 2023
活动61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 - Toronto, 加拿大
期限: 9 7月 202314 7月 2023

出版系列

姓名Proceedings of the Annual Meeting of the Association for Computational Linguistics
1
ISSN(印刷版)0736-587X

会议

会议61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
国家/地区加拿大
Toronto
时期9/07/2314/07/23

指纹

探究 'Causal Intervention and Counterfactual Reasoning for Multi-modal Fake News Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此