摘要
We consider the chemotaxis-haptotaxis model {ut=∇·(D(u)∇u)-χ∇·(u∇v)-ξ∇·(u∇w)+μu(1-u-w),x∈Ω,t>0, vt=Δv-v+u,x∈Ω,t>0, wt=-vw,x∈Ω,t>0 in a bounded smooth domain Ω⊂ ℝn(n≥2), where χ,ξ and μ are positive parameters, and the diffusivity D(u) is assumed to generalize the prototype D(u)=δ(u+1)-α with α ∈ R. Under zero-flux boundary conditions, it is shown that for sufficiently smooth initial data (u0,v0,w0) and α < 2-n/n+2, the corresponding initial-boundary problem possesses a unique global-in-time classical solution which is uniformly bounded, which improves the previous results.
源语言 | 英语 |
---|---|
页(从-至) | 122-126 |
页数 | 5 |
期刊 | Applied Mathematics Letters |
卷 | 59 |
DOI | |
出版状态 | 已出版 - 1 9月 2016 |
指纹
探究 'Boundedness in a multi-dimensional chemotaxis-haptotaxis model with nonlinear diffusion' 的科研主题。它们共同构成独一无二的指纹。引用此
Wang, Y. (2016). Boundedness in a multi-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Applied Mathematics Letters, 59, 122-126. https://doi.org/10.1016/j.aml.2016.03.019