Boundedness in a multi-dimensional chemotaxis-haptotaxis model with nonlinear diffusion

Yifu Wang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

14 引用 (Scopus)

摘要

We consider the chemotaxis-haptotaxis model {ut=∇·(D(u)∇u)-χ∇·(u∇v)-ξ∇·(u∇w)+μu(1-u-w),x∈Ω,t>0, vt=Δv-v+u,x∈Ω,t>0, wt=-vw,x∈Ω,t>0 in a bounded smooth domain Ω⊂ ℝn(n≥2), where χ,ξ and μ are positive parameters, and the diffusivity D(u) is assumed to generalize the prototype D(u)=δ(u+1) with α ∈ R. Under zero-flux boundary conditions, it is shown that for sufficiently smooth initial data (u0,v0,w0) and α < 2-n/n+2, the corresponding initial-boundary problem possesses a unique global-in-time classical solution which is uniformly bounded, which improves the previous results.

源语言英语
页(从-至)122-126
页数5
期刊Applied Mathematics Letters
59
DOI
出版状态已出版 - 1 9月 2016

指纹

探究 'Boundedness in a multi-dimensional chemotaxis-haptotaxis model with nonlinear diffusion' 的科研主题。它们共同构成独一无二的指纹。

引用此