TY - JOUR
T1 - Boundedness in a multi-dimensional chemotaxis-haptotaxis model with nonlinear diffusion
AU - Wang, Yifu
N1 - Publisher Copyright:
© 2016 Elsevier Ltd. All rights reserved.
PY - 2016/9/1
Y1 - 2016/9/1
N2 - We consider the chemotaxis-haptotaxis model {ut=∇·(D(u)∇u)-χ∇·(u∇v)-ξ∇·(u∇w)+μu(1-u-w),x∈Ω,t>0, vt=Δv-v+u,x∈Ω,t>0, wt=-vw,x∈Ω,t>0 in a bounded smooth domain Ω⊂ ℝn(n≥2), where χ,ξ and μ are positive parameters, and the diffusivity D(u) is assumed to generalize the prototype D(u)=δ(u+1)-α with α ∈ R. Under zero-flux boundary conditions, it is shown that for sufficiently smooth initial data (u0,v0,w0) and α < 2-n/n+2, the corresponding initial-boundary problem possesses a unique global-in-time classical solution which is uniformly bounded, which improves the previous results.
AB - We consider the chemotaxis-haptotaxis model {ut=∇·(D(u)∇u)-χ∇·(u∇v)-ξ∇·(u∇w)+μu(1-u-w),x∈Ω,t>0, vt=Δv-v+u,x∈Ω,t>0, wt=-vw,x∈Ω,t>0 in a bounded smooth domain Ω⊂ ℝn(n≥2), where χ,ξ and μ are positive parameters, and the diffusivity D(u) is assumed to generalize the prototype D(u)=δ(u+1)-α with α ∈ R. Under zero-flux boundary conditions, it is shown that for sufficiently smooth initial data (u0,v0,w0) and α < 2-n/n+2, the corresponding initial-boundary problem possesses a unique global-in-time classical solution which is uniformly bounded, which improves the previous results.
KW - Boundedness
KW - Chemotaxis
KW - Haptotaxis
KW - Logistic source
KW - Nonlinear diffusion
UR - http://www.scopus.com/inward/record.url?scp=84963677326&partnerID=8YFLogxK
U2 - 10.1016/j.aml.2016.03.019
DO - 10.1016/j.aml.2016.03.019
M3 - Article
AN - SCOPUS:84963677326
SN - 0893-9659
VL - 59
SP - 122
EP - 126
JO - Applied Mathematics Letters
JF - Applied Mathematics Letters
ER -