Asymptotics of the principal eigenvalue for a linear time-periodic parabolic operator i: Large advection

Shuang Liu, Yuan Lou, Rui Peng, Maolin Zhou

科研成果: 期刊稿件文章同行评审

8 引用 (Scopus)

摘要

We investigate the effect of large advection on the principal eigenvalues of linear time-periodic parabolic operators with zero Neumann boundary conditions. Various asymptotic behaviors of the principal eigenvalues, when the advection coefficient approaches infinity, are established, where spatial or temporal degeneracy could occur in the advection term. Our findings substantially improve the results in [R. Peng and X.-Q. Zhao, Calc. Var. Partial Differential Equations, 54 (2015), pp. 1611-1642] for parabolic operators and also extend the existing results in [X. F. Chen and Y. Lou, Indiana Univ. Math. J., 57 (2008), pp. 627-658; R. Peng and M. Zhou, Indiana Univ. Math J., 67 (2018), pp. 2523-2568] for elliptic operators.

源语言英语
页(从-至)5243-5277
页数35
期刊SIAM Journal on Mathematical Analysis
53
5
DOI
出版状态已出版 - 2021
已对外发布

指纹

探究 'Asymptotics of the principal eigenvalue for a linear time-periodic parabolic operator i: Large advection' 的科研主题。它们共同构成独一无二的指纹。

引用此