摘要
In this paper, based on Lp- Lq estimate for the Neumann heat semigroup, we investigate the asymptotic behavior for solutions to an oncolytic virotherapy model given by {ut=Δu-ξu∇·(u∇v)-ρuuz,x∈Ω,t>0,wt=Δw-ξw∇·(w∇v)-δww+ρwuz,x∈Ω,t>0,vt=-(αuu+αww)v-δvv,x∈Ω,t>0,zt=Δz-ξz∇·(z∇v)-δzz-ρzuz+βw,x∈Ω,t>0,where u, w, v and z denote the density of uninfected cancer cells, oncolytic viruses infected cancer cells, extracellular matrix and oncolytic virus particles, respectively. It is showed that when suitably regular initial data satisfy a certain small condition, infected cancer cells and virus particle populations will both become extinct asymptotically.
源语言 | 英语 |
---|---|
文章编号 | 55 |
期刊 | Zeitschrift fur Angewandte Mathematik und Physik |
卷 | 73 |
期 | 2 |
DOI | |
出版状态 | 已出版 - 4月 2022 |
指纹
探究 'Asymptotic behavior for solutions to an oncolytic virotherapy model involving triply haptotactic terms' 的科研主题。它们共同构成独一无二的指纹。引用此
Wei, Y. N., Wang, Y., & Li, J. (2022). Asymptotic behavior for solutions to an oncolytic virotherapy model involving triply haptotactic terms. Zeitschrift fur Angewandte Mathematik und Physik, 73(2), 文章 55. https://doi.org/10.1007/s00033-022-01691-2