TY - GEN
T1 - Application of wavelet de-noising in non-stationary signal analysis based on the parameter optimization of improved threshold function
AU - Nie, Hai Zhao
AU - Liu, Hui
AU - Shi, Lei
PY - 2014
Y1 - 2014
N2 - Using wavelet analysis for non-stationary signal de-noising of electro-mechanical system is considered to be the best approach, and wavelet threshold de-noising method is the most simple method that needs the minimum amount of calculation. But this method in selecting threshold functions needs to be improved. Based on different domestic and foreign methods of improving threshold function, propose an improved bivariate threshold function. According to the simulation of non-stationary signal de-noising, the results show that the optimal de-noising results of different signals exist by taking different parameters. Compared with all the de-noising effects, application of the bivariate threshold function considering signal-to-noise ratio and mean square error is superior to the traditional soft and hard threshold functions. At the same time, it can significantly improve the filtering precision, and reserve the main signal details while effectively removing the noise well.
AB - Using wavelet analysis for non-stationary signal de-noising of electro-mechanical system is considered to be the best approach, and wavelet threshold de-noising method is the most simple method that needs the minimum amount of calculation. But this method in selecting threshold functions needs to be improved. Based on different domestic and foreign methods of improving threshold function, propose an improved bivariate threshold function. According to the simulation of non-stationary signal de-noising, the results show that the optimal de-noising results of different signals exist by taking different parameters. Compared with all the de-noising effects, application of the bivariate threshold function considering signal-to-noise ratio and mean square error is superior to the traditional soft and hard threshold functions. At the same time, it can significantly improve the filtering precision, and reserve the main signal details while effectively removing the noise well.
KW - Mean square error
KW - Non-stationary signal
KW - Signal to noise ratio
KW - Threshold function
KW - Wavelet analysis
UR - http://www.scopus.com/inward/record.url?scp=84887557128&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/AMM.448-453.2068
DO - 10.4028/www.scientific.net/AMM.448-453.2068
M3 - Conference contribution
AN - SCOPUS:84887557128
SN - 9783037859124
T3 - Applied Mechanics and Materials
SP - 2068
EP - 2076
BT - Renewable Energy and Environmental Technology
T2 - 2013 International Conference on Renewable Energy and Environmental Technology, REET 2013
Y2 - 21 September 2013 through 22 September 2013
ER -