TY - GEN
T1 - AoI-minimal UAV Crowdsensing by Model-based Graph Convolutional Reinforcement Learning
AU - Dai, Zipeng
AU - Liu, Chi Harold
AU - Ye, Yuxiao
AU - Han, Rui
AU - Yuan, Ye
AU - Wang, Guoren
AU - Tang, Jian
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Mobile Crowdsensing (MCS) with smart devices has become an appealing paradigm for urban sensing. With the development of 5G-and-beyond technologies, unmanned aerial vehicles (UAVs) become possible for real-time applications, including wireless coverage, search and even disaster response. In this paper, we consider to use a group of UAVs as aerial base stations (BSs) to move around and collect data from multiple MCS users, forming a UAV crowdsensing campaign (UCS). Our goal is to maximize the collected data, geographical coverage whiling minimizing the age-of-information (AoI) of all mobile users simultaneously, with efficient use of constrained energy reserve. We propose a model-based deep reinforcement learning (DRL) framework called "GCRL-min(AoI)", which mainly consists of a novel model-based Monte Carlo tree search (MCTS) structure based on state-of-the-art approach MCTS (AlphaZero). We further improve it by adding a spatial UAV-user correlation extraction mechanism by a relational graph convolutional network (RGCN), and a next state prediction module to reduce the dependance of experience data. Extensive results and trajectory visualization on three real human mobility datasets in Purdue University, KAIST and NCSU show that GCRL-min(AoI) consistently outperforms five baselines, when varying different number of UAVs and maximum coupling loss in terms of four metrics.
AB - Mobile Crowdsensing (MCS) with smart devices has become an appealing paradigm for urban sensing. With the development of 5G-and-beyond technologies, unmanned aerial vehicles (UAVs) become possible for real-time applications, including wireless coverage, search and even disaster response. In this paper, we consider to use a group of UAVs as aerial base stations (BSs) to move around and collect data from multiple MCS users, forming a UAV crowdsensing campaign (UCS). Our goal is to maximize the collected data, geographical coverage whiling minimizing the age-of-information (AoI) of all mobile users simultaneously, with efficient use of constrained energy reserve. We propose a model-based deep reinforcement learning (DRL) framework called "GCRL-min(AoI)", which mainly consists of a novel model-based Monte Carlo tree search (MCTS) structure based on state-of-the-art approach MCTS (AlphaZero). We further improve it by adding a spatial UAV-user correlation extraction mechanism by a relational graph convolutional network (RGCN), and a next state prediction module to reduce the dependance of experience data. Extensive results and trajectory visualization on three real human mobility datasets in Purdue University, KAIST and NCSU show that GCRL-min(AoI) consistently outperforms five baselines, when varying different number of UAVs and maximum coupling loss in terms of four metrics.
KW - Age of Information
KW - Graph convolutional reinforcement learning
KW - Mobile crowdsensing
KW - Unmanned aerial vehicles
UR - http://www.scopus.com/inward/record.url?scp=85133242009&partnerID=8YFLogxK
U2 - 10.1109/INFOCOM48880.2022.9796732
DO - 10.1109/INFOCOM48880.2022.9796732
M3 - Conference contribution
AN - SCOPUS:85133242009
T3 - Proceedings - IEEE INFOCOM
SP - 1029
EP - 1038
BT - INFOCOM 2022 - IEEE Conference on Computer Communications
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 41st IEEE Conference on Computer Communications, INFOCOM 2022
Y2 - 2 May 2022 through 5 May 2022
ER -