An intermediate value property of fractal dimensions of cartesian product

Xiaofang Jiang, Qinghui Liu*, Zhiying Wen

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

4 引用 (Scopus)

摘要

Given two metric spaces E,F, it is well known that, dimHE +dimHF ≤ dimH(E × F) ≤dimHE +dimPF, dimHE +dimPF ≤ dimP(E × F) ≤dimPE +dimPF, where dimHE, dimPE denote, respectively, the Hausdorff and packing dimension of E. In this paper, we show that, for any 0 ≤ s,t ≤ 1, there exist E,F a" such that the following equalities hold simultaneously: dimH(E × F)-dimHE-dimHF = s, dimPE +dimPF-dimP(E × F) = t. This complete the related results of Wei et al. [C. Wei, S. Y. Wen and Z. X. Wen, Remarks on dimensions of Cartesian product sets, Fractals 24(3) (2016) 1650031].

源语言英语
文章编号1750052
期刊Fractals
25
6
DOI
出版状态已出版 - 1 12月 2017

指纹

探究 'An intermediate value property of fractal dimensions of cartesian product' 的科研主题。它们共同构成独一无二的指纹。

引用此