An improved ant colony algorithm to solve knapsack problem

Shuang Li*, Shuliang Wang, Qiuming Zhang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Ant colony optimization algorithm is a novel simulated evolutionary algorithm, which provides a new method for complicated combinatorial optimization problems. In this paper the algorithm is used for solving the knapsack problem. It is improved in selection strategy and information modification, so that it can not easily run into the local optimum and can converge at the global optimum. The experiments show the robustness and the potential power of this kind of meta -heuristic algorithm.

源语言英语
主期刊名Geoinformatics 2006
主期刊副标题Remotely Sensed Data and Information
DOI
出版状态已出版 - 2006
已对外发布
活动Geoinformatics 2006: Remotely Sensed Data and Information - Wuhan, 中国
期限: 28 10月 200629 10月 2006

出版系列

姓名Proceedings of SPIE - The International Society for Optical Engineering
6419
ISSN(印刷版)0277-786X

会议

会议Geoinformatics 2006: Remotely Sensed Data and Information
国家/地区中国
Wuhan
时期28/10/0629/10/06

指纹

探究 'An improved ant colony algorithm to solve knapsack problem' 的科研主题。它们共同构成独一无二的指纹。

引用此