TY - JOUR
T1 - An Extension of the Chvátal–Erdős Theorem
T2 - Counting the Number of Maximum Independent Sets
AU - Chen, Guantao
AU - Li, Yinkui
AU - Ma, Haicheng
AU - Wu, Tingzeng
AU - Xiong, Liming
N1 - Publisher Copyright:
© 2014, Springer Japan.
PY - 2015/7/19
Y1 - 2015/7/19
N2 - Chvátal and Erdős proved a well-known result that the graph $$G$$G with connectivity $$\kappa (G)$$κ(G) not less than its independence number $$\alpha (G)$$α(G) [$$\alpha (G)+1$$α(G)+1, $$\alpha (G)-1$$α(G)-1, respectively] is Hamiltonian (traceable, Hamiltonian-connected, respectively). In this paper, we strengthen the Chvátal–Erdős theorem to the following: Let $$G$$G be a simple 2-connected graph of order large enough such that $$\alpha (G)\le \kappa (G)+1$$α(G)≤κ(G)+1 [$$\alpha (G)\le \kappa (G)+2$$α(G)≤κ(G)+2, $$\alpha (G)\le \kappa (G),$$α(G)≤κ(G), respectively] and such that the number of maximum independent sets of cardinality $$\kappa (G)+1$$κ(G)+1 [$$\kappa (G)+2$$κ(G)+2, $$\kappa (G)$$κ(G), respectively] is at most $$n-2\kappa (G)$$n-2κ(G) [$$n-2\kappa (G)-1$$n-2κ(G)-1, $$n-2\kappa (G)+1$$n-2κ(G)+1, respectively]. Then $$G$$G is either Hamiltonian (traceable, Hamiltonian-connected, respectively) or a subgraph of $$K_{k}+((kK_1)\cup K_{n-2k})$$Kk+((kK1)∪Kn-2k) [$$K_{k}+((k+1)K_1\cup K_{n-2k-1})$$Kk+((k+1)K1∪Kn-2k-1), $$K_{k}+((k-1)K_1\cup K_{n-2k+1})$$Kk+((k-1)K1∪Kn-2k+1), respectively].
AB - Chvátal and Erdős proved a well-known result that the graph $$G$$G with connectivity $$\kappa (G)$$κ(G) not less than its independence number $$\alpha (G)$$α(G) [$$\alpha (G)+1$$α(G)+1, $$\alpha (G)-1$$α(G)-1, respectively] is Hamiltonian (traceable, Hamiltonian-connected, respectively). In this paper, we strengthen the Chvátal–Erdős theorem to the following: Let $$G$$G be a simple 2-connected graph of order large enough such that $$\alpha (G)\le \kappa (G)+1$$α(G)≤κ(G)+1 [$$\alpha (G)\le \kappa (G)+2$$α(G)≤κ(G)+2, $$\alpha (G)\le \kappa (G),$$α(G)≤κ(G), respectively] and such that the number of maximum independent sets of cardinality $$\kappa (G)+1$$κ(G)+1 [$$\kappa (G)+2$$κ(G)+2, $$\kappa (G)$$κ(G), respectively] is at most $$n-2\kappa (G)$$n-2κ(G) [$$n-2\kappa (G)-1$$n-2κ(G)-1, $$n-2\kappa (G)+1$$n-2κ(G)+1, respectively]. Then $$G$$G is either Hamiltonian (traceable, Hamiltonian-connected, respectively) or a subgraph of $$K_{k}+((kK_1)\cup K_{n-2k})$$Kk+((kK1)∪Kn-2k) [$$K_{k}+((k+1)K_1\cup K_{n-2k-1})$$Kk+((k+1)K1∪Kn-2k-1), $$K_{k}+((k-1)K_1\cup K_{n-2k+1})$$Kk+((k-1)K1∪Kn-2k+1), respectively].
KW - Chvátal–Erdős theorem
KW - Connectivity
KW - Independence number
KW - Maximum independent set
UR - http://www.scopus.com/inward/record.url?scp=84931565424&partnerID=8YFLogxK
U2 - 10.1007/s00373-014-1416-2
DO - 10.1007/s00373-014-1416-2
M3 - Article
AN - SCOPUS:84931565424
SN - 0911-0119
VL - 31
SP - 885
EP - 896
JO - Graphs and Combinatorics
JF - Graphs and Combinatorics
IS - 4
ER -