TY - GEN
T1 - Adaptive Image-to-Video Scene Graph Generation via Knowledge Reasoning and Adversarial Learning
AU - Chen, Jin
AU - Ji, Xiaofeng
AU - Wu, Xinxiao
N1 - Publisher Copyright:
Copyright © 2022, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2022/6/30
Y1 - 2022/6/30
N2 - Scene graph in a video conveys a wealth of information about objects and their relationships in the scene, thus benefiting many downstream tasks such as video captioning and visual question answering. Existing methods of scene graph generation require large-scale training videos annotated with objects and relationships in each frame to learn a powerful model. However, such comprehensive annotation is time-consuming and labor-intensive. On the other hand, it is much easier and less cost to annotate images with scene graphs, so we investigate leveraging annotated images to facilitate training a scene graph generation model for unannotated videos, namely image-to-video scene graph generation. This task presents two challenges: 1) infer unseen dynamic relationships in videos from static relationships in images due to the absence of motion information in images; 2) adapt objects and static relationships from images to video frames due to the domain shift between them. To address the first challenge, we exploit external commonsense knowledge to infer the unseen dynamic relationship from the temporal evolution of static relationships. We tackle the second challenge by hierarchical adversarial learning to reduce the data distribution discrepancy between images and video frames. Extensive experiment results on two benchmark video datasets demonstrate the effectiveness of our method.
AB - Scene graph in a video conveys a wealth of information about objects and their relationships in the scene, thus benefiting many downstream tasks such as video captioning and visual question answering. Existing methods of scene graph generation require large-scale training videos annotated with objects and relationships in each frame to learn a powerful model. However, such comprehensive annotation is time-consuming and labor-intensive. On the other hand, it is much easier and less cost to annotate images with scene graphs, so we investigate leveraging annotated images to facilitate training a scene graph generation model for unannotated videos, namely image-to-video scene graph generation. This task presents two challenges: 1) infer unseen dynamic relationships in videos from static relationships in images due to the absence of motion information in images; 2) adapt objects and static relationships from images to video frames due to the domain shift between them. To address the first challenge, we exploit external commonsense knowledge to infer the unseen dynamic relationship from the temporal evolution of static relationships. We tackle the second challenge by hierarchical adversarial learning to reduce the data distribution discrepancy between images and video frames. Extensive experiment results on two benchmark video datasets demonstrate the effectiveness of our method.
UR - http://www.scopus.com/inward/record.url?scp=85147718362&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85147718362
T3 - Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022
SP - 276
EP - 284
BT - AAAI-22 Technical Tracks 1
PB - Association for the Advancement of Artificial Intelligence
T2 - 36th AAAI Conference on Artificial Intelligence, AAAI 2022
Y2 - 22 February 2022 through 1 March 2022
ER -