TY - JOUR
T1 - A small molecule activator of SIRT3 promotes deacetylation and activation of manganese superoxide dismutase
AU - Lu, Jiaqi
AU - Zhang, Hua
AU - Chen, Xian
AU - Zou, Yong
AU - Li, Jiasong
AU - Wang, Li
AU - Wu, Minhao
AU - Zang, Jianye
AU - Yu, Yang
AU - Zhuang, Wei
AU - Xia, Qing
AU - Wang, Jiangyun
N1 - Publisher Copyright:
© 2017
PY - 2017/11
Y1 - 2017/11
N2 - The modulation of protein acetylation network is a promising strategy for life span extension and disease treatment (Sabari et al., 2016; Giblin et al., 2014) [1,2. A variety of small molecules have been developed to target deacetylases, but extremely few of these molecules are capable of activating the mitochondrial NAD-dependent deacetylase sirtuin-3 (SIRT3) (Gertz and Steegborn, 2016; Scholz et al., 2015) [3,4. Manganese superoxide dismutase (MnSOD) is the major superoxide scavenger in mitochondria, whose activity is regulated by SIRT3-mediated deacetylation, particularly at the Lys68 site (Chen et al., 2011) [5]. To investigate the influence of Lys68 acetylation on MnSOD activity, we produced a mutant MnSOD protein-bearing N-acetyllysine (AcK) at its Lys68 position through the genetic code expansion approach. We solved the crystal structure of this acetylated MnSOD (MnSODK68AcK), thus revealing the structural and electrostatic basis for the significant activity decrease upon Lys68 acetylation. On the basis of an assay we developed for the SIRT3-mediated deacetylation of MnSODK68AcK, we identified a novel SIRT3 activator, 7-hydroxy-3-(4′-methoxyphenyl) coumarin (C12), which binds to SIRT3 with high affinity and can promote the deacetylation and activation of MnSOD. C12 adds to the current repertoire of extremely few SIRT3 activators, which are potentially valuable for treating a wide array of diseases via modulating the cellular acetylome.
AB - The modulation of protein acetylation network is a promising strategy for life span extension and disease treatment (Sabari et al., 2016; Giblin et al., 2014) [1,2. A variety of small molecules have been developed to target deacetylases, but extremely few of these molecules are capable of activating the mitochondrial NAD-dependent deacetylase sirtuin-3 (SIRT3) (Gertz and Steegborn, 2016; Scholz et al., 2015) [3,4. Manganese superoxide dismutase (MnSOD) is the major superoxide scavenger in mitochondria, whose activity is regulated by SIRT3-mediated deacetylation, particularly at the Lys68 site (Chen et al., 2011) [5]. To investigate the influence of Lys68 acetylation on MnSOD activity, we produced a mutant MnSOD protein-bearing N-acetyllysine (AcK) at its Lys68 position through the genetic code expansion approach. We solved the crystal structure of this acetylated MnSOD (MnSODK68AcK), thus revealing the structural and electrostatic basis for the significant activity decrease upon Lys68 acetylation. On the basis of an assay we developed for the SIRT3-mediated deacetylation of MnSODK68AcK, we identified a novel SIRT3 activator, 7-hydroxy-3-(4′-methoxyphenyl) coumarin (C12), which binds to SIRT3 with high affinity and can promote the deacetylation and activation of MnSOD. C12 adds to the current repertoire of extremely few SIRT3 activators, which are potentially valuable for treating a wide array of diseases via modulating the cellular acetylome.
KW - Acetylation
KW - Electrostatic potential
KW - MnSOD
KW - SIRT3
KW - Superoxide
UR - http://www.scopus.com/inward/record.url?scp=85026878465&partnerID=8YFLogxK
U2 - 10.1016/j.freeradbiomed.2017.07.012
DO - 10.1016/j.freeradbiomed.2017.07.012
M3 - Article
C2 - 28711502
AN - SCOPUS:85026878465
SN - 0891-5849
VL - 112
SP - 287
EP - 297
JO - Free Radical Biology and Medicine
JF - Free Radical Biology and Medicine
ER -