A short-term wind power probability prediction method based on soft clustering and similarity measurement

Zhiwei Liu, Xin Liu*, Lin Gong, Minxia Liu, Xi Xiang, Jian Xie, Yongyang Zhang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

With the rapid development of wind energy, probabilistic forecasting of wind power becomes increasingly crucial for reliable operations of power grids. This paper proposes a wind power interval prediction method based on temporal data soft clustering and similarity measurement (SCSM). First, a soft clustering module is used to cluster wind power data with probabilities. Next, a similarity measurement module assesses the similarity between wind power data based on soft clustering results and generates probability interval predictions by referring to historical prediction errors. Finally, the effectiveness of the proposed method is validated using real wind power data.

源语言英语
主期刊名Fourth International Conference on Mechanical, Electronics, and Electrical and Automation Control, METMS 2024
编辑Zeashan Hameed Khan, Junxing Zhang, Pengfei Zeng
出版商SPIE
ISBN(电子版)9781510679870
DOI
出版状态已出版 - 2024
活动4th International Conference on Mechanical, Electronics, and Electrical and Automation Control, METMS 2024 - Xi'an, 中国
期限: 26 1月 202428 1月 2024

出版系列

姓名Proceedings of SPIE - The International Society for Optical Engineering
13163
ISSN(印刷版)0277-786X
ISSN(电子版)1996-756X

会议

会议4th International Conference on Mechanical, Electronics, and Electrical and Automation Control, METMS 2024
国家/地区中国
Xi'an
时期26/01/2428/01/24

指纹

探究 'A short-term wind power probability prediction method based on soft clustering and similarity measurement' 的科研主题。它们共同构成独一无二的指纹。

引用此