A regression forecasting model of carbon dioxide concentrations based-on principal component analysis-support vector machine

Yiou Wang*, Gangyi Ding, Laiyang Liu

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

We propose Principal Component Analysis-Support Vector Machine (PCA-SVM) to forecast the changes of regional carbon dioxide concentrations. Firstly, we get the most valuable principal components of the influencing factors (IF) of carbon dioxide concentrations by PCA. Then we use the output of PCA as the input of non-linear SVM to learn a regression forecasting model with radial basis function. Due to the introducing of PCA, we successfully eliminate the redundant and correlate information in IFs and reduce the computation cost of SVM. The results of the comparative experiment demonstrate that our PCA-SVM model is more effective and more efficient than the standard SVM. Moreover, we have tested different kernel functions in our PCA-SVM model, and the experimental results show that PCA-SVM model with radial basis function performs best respecting to the learning ability and generalization capability.

源语言英语
主期刊名Geo-Informatics in Resource Management and Sustainable Ecosystem - 2nd International Conference, GRMSE 2014, Proceedings
编辑Fuling Bian, Yichun Xie
出版商Springer Verlag
447-457
页数11
ISBN(电子版)9783662457368
DOI
出版状态已出版 - 2015
活动2nd International Conference on Geo-Informatics in Resource Management and Sustainable Ecosystem, GRMSE 2014 - Ypsilanti, 美国
期限: 3 10月 20145 10月 2014

出版系列

姓名Communications in Computer and Information Science
482
ISSN(印刷版)1865-0929
ISSN(电子版)1865-0937

会议

会议2nd International Conference on Geo-Informatics in Resource Management and Sustainable Ecosystem, GRMSE 2014
国家/地区美国
Ypsilanti
时期3/10/145/10/14

指纹

探究 'A regression forecasting model of carbon dioxide concentrations based-on principal component analysis-support vector machine' 的科研主题。它们共同构成独一无二的指纹。

引用此