A novel image registration approach via combining local features and geometric invariants

Yan Lu, Kun Gao*, Tinghua Zhang, Tingfa Xu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

26 引用 (Scopus)

摘要

Image registration is widely used in many fields, but the adaptability of the existing methods is limited. This work proposes a novel image registration method with high precision for various complex applications. In this framework, the registration problem is divided into two stages. First, we detect and describe scale-invariant feature points using modified computer vision-oriented fast and rotated brief (ORB) algorithm, and a simple method to increase the performance of feature points matching is proposed. Second, we develop a new local constraint of rough selection according to the feature distances. Evidence shows that the existing matching techniques based on image features are insufficient for the images with sparse image details. Then, we propose a novel matching algorithm via geometric constraints, and establish local feature descriptions based on geometric invariances for the selected feature points. Subsequently, a new price function is constructed to evaluate the similarities between points and obtain exact matching pairs. Finally, we employ the progressive sample consensus method to remove wrong matches and calculate the space transform parameters. Experimental results on various complex image datasets verify that the proposed method is more robust and significantly reduces the rate of false matches while retaining more high-quality feature points.

源语言英语
文章编号e0190383
期刊PLoS ONE
13
1
DOI
出版状态已出版 - 1月 2018

指纹

探究 'A novel image registration approach via combining local features and geometric invariants' 的科研主题。它们共同构成独一无二的指纹。

引用此