TY - JOUR
T1 - A novel image registration approach via combining local features and geometric invariants
AU - Lu, Yan
AU - Gao, Kun
AU - Zhang, Tinghua
AU - Xu, Tingfa
N1 - Publisher Copyright:
© 2018 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/1
Y1 - 2018/1
N2 - Image registration is widely used in many fields, but the adaptability of the existing methods is limited. This work proposes a novel image registration method with high precision for various complex applications. In this framework, the registration problem is divided into two stages. First, we detect and describe scale-invariant feature points using modified computer vision-oriented fast and rotated brief (ORB) algorithm, and a simple method to increase the performance of feature points matching is proposed. Second, we develop a new local constraint of rough selection according to the feature distances. Evidence shows that the existing matching techniques based on image features are insufficient for the images with sparse image details. Then, we propose a novel matching algorithm via geometric constraints, and establish local feature descriptions based on geometric invariances for the selected feature points. Subsequently, a new price function is constructed to evaluate the similarities between points and obtain exact matching pairs. Finally, we employ the progressive sample consensus method to remove wrong matches and calculate the space transform parameters. Experimental results on various complex image datasets verify that the proposed method is more robust and significantly reduces the rate of false matches while retaining more high-quality feature points.
AB - Image registration is widely used in many fields, but the adaptability of the existing methods is limited. This work proposes a novel image registration method with high precision for various complex applications. In this framework, the registration problem is divided into two stages. First, we detect and describe scale-invariant feature points using modified computer vision-oriented fast and rotated brief (ORB) algorithm, and a simple method to increase the performance of feature points matching is proposed. Second, we develop a new local constraint of rough selection according to the feature distances. Evidence shows that the existing matching techniques based on image features are insufficient for the images with sparse image details. Then, we propose a novel matching algorithm via geometric constraints, and establish local feature descriptions based on geometric invariances for the selected feature points. Subsequently, a new price function is constructed to evaluate the similarities between points and obtain exact matching pairs. Finally, we employ the progressive sample consensus method to remove wrong matches and calculate the space transform parameters. Experimental results on various complex image datasets verify that the proposed method is more robust and significantly reduces the rate of false matches while retaining more high-quality feature points.
UR - http://www.scopus.com/inward/record.url?scp=85039962563&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0190383
DO - 10.1371/journal.pone.0190383
M3 - Article
C2 - 29293595
AN - SCOPUS:85039962563
SN - 1932-6203
VL - 13
JO - PLoS ONE
JF - PLoS ONE
IS - 1
M1 - e0190383
ER -