A necessary and sufficient condition for convergence of the Lax–Oleinik semigroup for reversible Hamiltonians on Rn

Qihuai Liu*, Kaizhi Wang, Lin Wang, Jun Yan

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)

摘要

This paper is devoted to the study of the convergence of the Lax–Oleinik semigroup associated with reversible Hamiltonians H(x,p) on Rn. We provide a necessary and sufficient condition for the convergence of the semigroup. We also give an example to show that for irreversible Hamiltonians on Rn, even if the Hamiltonian is integrable and the initial data is Lipschitz continuous and bounded, the corresponding Lax–Oleinik semigroup may not converge.

源语言英语
页(从-至)5289-5305
页数17
期刊Journal of Differential Equations
261
10
DOI
出版状态已出版 - 15 11月 2016
已对外发布

指纹

探究 'A necessary and sufficient condition for convergence of the Lax–Oleinik semigroup for reversible Hamiltonians on Rn' 的科研主题。它们共同构成独一无二的指纹。

引用此