摘要
This paper is devoted to the study of the convergence of the Lax–Oleinik semigroup associated with reversible Hamiltonians H(x,p) on Rn. We provide a necessary and sufficient condition for the convergence of the semigroup. We also give an example to show that for irreversible Hamiltonians on Rn, even if the Hamiltonian is integrable and the initial data is Lipschitz continuous and bounded, the corresponding Lax–Oleinik semigroup may not converge.
源语言 | 英语 |
---|---|
页(从-至) | 5289-5305 |
页数 | 17 |
期刊 | Journal of Differential Equations |
卷 | 261 |
期 | 10 |
DOI | |
出版状态 | 已出版 - 15 11月 2016 |
已对外发布 | 是 |
指纹
探究 'A necessary and sufficient condition for convergence of the Lax–Oleinik semigroup for reversible Hamiltonians on Rn' 的科研主题。它们共同构成独一无二的指纹。引用此
Liu, Q., Wang, K., Wang, L., & Yan, J. (2016). A necessary and sufficient condition for convergence of the Lax–Oleinik semigroup for reversible Hamiltonians on Rn. Journal of Differential Equations, 261(10), 5289-5305. https://doi.org/10.1016/j.jde.2016.08.001