A Modern Physical GAN for Unsupervised Low-Light Image Enhancement via Illumination Estimation

Tong Liu, Wen Da Xu, Yu Feng Liu, Si Yuan Liu, Xiao Lu Chen

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Low-light environments can cause severe degradation in the visual quality of captured images, leading to the failure of advanced visual perception algorithms and creating hazards in areas such as unmanned vehicles, security surveillance, and visual localization. While deep learning has driven the advancement of Low-Light Image Enhancement (LLIE) techniques, the generalization capability of supervised learning methods is limited by the quality and size of paired datasets. To address this challenge, this paper proposes a novel unsupervised LLIE method that combines a physical model with a Generative Adversarial Network (GAN). The proposed method constructs a lightweight, fully convolutional GAN network that supports arbitrary resolution inputs and is based on modern convolutional blocks. Unlike the end-to-end approach, the generator takes low-light images and illumination as inputs, and combines them with physical models to generate enhanced results. Additionally, a multi-scale deep supervision mechanism is introduced in the discriminator to improve the visual quality of the generated images. The proposed method is compared with existing mainstream methods both qualitatively and quantitatively, demonstrating its lightweight, effectiveness, and superiority.

源语言英语
主期刊名2023 42nd Chinese Control Conference, CCC 2023
出版商IEEE Computer Society
8007-8014
页数8
ISBN(电子版)9789887581543
DOI
出版状态已出版 - 2023
活动42nd Chinese Control Conference, CCC 2023 - Tianjin, 中国
期限: 24 7月 202326 7月 2023

出版系列

姓名Chinese Control Conference, CCC
2023-July
ISSN(印刷版)1934-1768
ISSN(电子版)2161-2927

会议

会议42nd Chinese Control Conference, CCC 2023
国家/地区中国
Tianjin
时期24/07/2326/07/23

指纹

探究 'A Modern Physical GAN for Unsupervised Low-Light Image Enhancement via Illumination Estimation' 的科研主题。它们共同构成独一无二的指纹。

引用此