A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies

Guoxin Zhang, Yin Jia, Cong Zhang, Xuya Xiong, Kai Sun, Ruida Chen, Wenxing Chen, Yun Kuang, Lirong Zheng, Haolin Tang, Wen Liu*, Junfeng Liu, Xiaoming Sun, Wen Feng Lin, Hongjie Dai

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

305 引用 (Scopus)

摘要

Single-atom electrocatalysts (SAECs) have gained tremendous attention due to their unique active sites and strong metal-substrate interactions. However, the current synthesis of SAECs mostly relies on costly precursors and rigid synthetic conditions and often results in very low content of single-site metal atoms. Herein, we report an efficient synthesis method to prepare metal-nitrogen-carbon SAECs based on formamide condensation and carbonization, featuring a cost-effective general methodology for the mass production of SAECs with high loading of atomically dispersed metal sites. The products with metal inclusion were termed as formamide-converted metal-nitrogen-carbon (shortened as f-MNC) materials. Seven types of single-metallic f-MNC (Fe, Co, Ni, Mn, Zn, Mo and Ir), two bi-metallic (ZnFe and ZnCo) and one tri-metallic (ZnFeCo) SAECs were synthesized to demonstrate the generality of the methodology developed. Remarkably, these f-MNC SAECs can be coated onto various supports with an ultrathin layer as pyrolysis-free electrocatalysts, among which the carbon nanotube-supported f-FeNC and f-NiNC SAECs showed high performance for the O2 reduction reaction (ORR) and the CO2 reduction reaction (CO2RR), respectively. Furthermore, the pyrolysis products of supported f-MNC can still render isolated metallic sites with excellent activity, as exemplified by the bi-metallic f-FeCoNC SAEC, which exhibited outstanding ORR performance in both alkaline and acid electrolytes by delivering ∼70 and ∼20 mV higher half-wave potentials than that of commercial 20 wt% Pt/C, respectively. This work offers a feasible approach to design and manufacture SAECs with tuneable atomic metal components and high density of single-site metal loading, and thus may accelerate the deployment of SAECs for various energy technology applications.

源语言英语
页(从-至)1317-1325
页数9
期刊Energy and Environmental Science
12
4
DOI
出版状态已出版 - 4月 2019

指纹

探究 'A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies' 的科研主题。它们共同构成独一无二的指纹。

引用此